DOI: 10.18287/2223-9537-2015-5-3-3-313-327 [In Russian]."> "Quality and Life" № 4(36) 2022. p. 3-10

"Quality and Life" № 4(36) 2022. p. 3-10

Introduction to Ontology of Quality Engineering.

Part 2. Methods, Tools and Applications

See part 1 in No. 3(35) 2022
 
A.Ya. Dmitriev, Ph.D., associate professor; Samara National Research University named after academician S.P. Korolev; Samara

e-mail: dmitriev57@rambler.ru

T.S. Filippova, postgraduate student, Samara National Research University named after academician S.P. Korolev; Samara

The article in the second part is devoted to further ontological analysis of quality engineer-ing. The relationship between quality engineering and disciplines such as quality management and robust quality engineering is defined, and an overview of quality engineering methods and tools is provided. Creative problems that arise in the process of quality engineering can be solved using the theory of inventive problem solving, with the use of which the further development of quality engineering methodology is associated. Examples of the application of quality engineering and the key aspects arising from this are given.

Keywords: quality, engineering, ontology of quality engineering, quality management, quality design, robust design, Taguchi methods, QFD, FMEA, TRIZ, GTE, UAV.

References:
1. Dmitriev A.Y., Filippova T.S. Introduction to the ontology of quality engineering Part 1. Basic terms and concepts. Quality and life. 2022. No. 3(35). pp. 3–9. DOI 10.34214/2312-5209-2022-35-3-03-09. EDN ZYLSMP.
2. Dmitriev A.Y., Mitroshkina T.A. Designing product quality based on parametric identification of models, customer requirements, knowledge: ontological paradigm. Ontology of Designing2015. V. 5. No. 3(17). pp. 313–327. DOI: 10.18287/2223-9537-2015-5-3-3-313-327 [In Russian].
3. ASQ. Quality Glossary [Electronic resource]. Available at: http://asq.org/glossary/q.html (accessed 12.11.2019).
4. Lisenkov A.N. Engineering approaches in modern quality management [Electronic resource]. Available at: http://library.miit.ru/methodics/200217/17-81.pdf (accessed September 29, 2019).
[In Russian].5. Taguchi G., Chowdhury S., Wu Yu. Taguchi’s Quality Engineering Handbook. Wiley, 2004. 1662 p.
6. Chernova Y.K., Shchipanov V.V. The first steps of robust design in the domestic auto-motive industry. News of the Tomsk Polytechnic University2006. V. 309 No. 5. pp. 193–197.
[In Russian].7. Grodzensky S.Ya. Quality control. Prospect. Moscow. 2017. 224 p. [In Russian].
8. Cambridge Dictionary [Electronic resource]. Available at: https://dictionary.cambridge.org/dictionary/english/robust (accessed 12.11.2019).
9. Taguchi G., Jugulum R., Taguchi Sh. Computer-Based Robust Engineering. American Society for Quality. Quality Press. Milwaukee 53203. 2005. 217 p.
10. Adler Yu. P. No matter how you deploy it, you still have to structure it. Methods of quality management. 2002. No. 4. pp. 11–13.
[In Russian].11. Dmitriev A.Ya., Vashukov Yu.A., Mitroshkina T. A. Robust design and technological preparation for the production of aircraft products. Samara State Aerospace University named after academician S.P. Korolev. Samara. 2016. 6 p. [In Russian].
12. Vysotskaya M.V., Dmitriev A.Ya. Robust design: a method for improving the production processes of testing products on stands to control the radial and end runout of rotation bodies. Effective management systems: quality, innovations, sustainable development: Proceedings of the VI International Scientific and Practical Forum. Kazan. February 16–18, 2017.Kazan: Publishing house «Knowledge», 2017. pp. 122–126. EDN ZIIZMV.
13. MIL-STD-1629A Military standard procedures for performing a failure mode, effects and criticality analysis. Enter. 1980-11-24. Department of Defense. 1980. 80 p.
14. GOST R 51814.2-2001 Quality systems in the automotive industry. Method of analysis of types and consequences of potential defects. In. 2002-01-01. Standartinform. Moscow. 2001. 40 p.
15. Dessauer F. Dispute on technology. Publishing House of the Samara Humani-tarian AcademySamara. 2017. 266 p.
16. Altshuller Genrih Saulovich. Available at: https://www.altshuller.ru/triz/[In Russian].
17. Tursch P, Goldmann Ch, Woll R Integration of TRIZ into quality function deployment. Management and Production Engineering Review. 2015. V. 6. No. 2. pp. 56–62.
18. Caligiana G., Liverani A., Francia D., Frizziero L. and Donnici G. Integrating QFD and TRIZ for innovative design. Journal of Advanced Mechanical Design, Systems, and Manufacturing2017. V. 11. No 2. 15 p.
19. Vysotskaya M.V. Improve the integrity testing process based on QFD, FMEA and TRIZ. IOP Conference Series: Materials Science and Engineering: 3rd Inter-national Scientific-Practical Conference on Quality Management and Reliability of Technical Sys-tems, St. Petersburg, 27–29.08.2020. BRISTOL. IOP Publishing Ltd, 2021. pp. 012051. DOI: 10.1088/1757-899X/986/1/012051. EDN WCGLDR.
20. Petrov V.M. Fundamentals of the theory of solving inventive problems. [Electronic resource]. Available at: http://www.triz.natm.ru/articles/petrov/00.htm (accessed 01.03.2020).
21. Filippova T.S., Dmitriev A.Ya., Zagidullin R.S. Quality engineering of agricultural un-manned aircraft. News of the Tula State University. Technical science. 2021. No. 5. pp. 543–548. [In Russian].
22. Filippova T.S. Quality engineering of a gas turbine engine as a key stage in the design of an unmanned aerial vehicle. Collection of abstracts of the international youth scientific conference XLVII Gagarin Readings 2021. Moscow. Pero. 2021. pp. 1191–1193.
[In Russian].23. Filippova T.S., Dmitriev A.Ya. Quality engineering of a gas turbine engine on the base of QFD and FMEA integrated method. Problems and prospects for the development of engine building. Samara State Aerospace University named after academician S.P. KorolevSamara. 2021. pp. 55–56 [In Russian].
24. Radionov V.N., Popova T.V., Dmitriev A.Ya., Mitroshkina T.A. Method for developing innovations taking into account risks in the production of automotive wires. Cables and wires. 2011. No. 1(326). pp. 10–14. EDN NXBEFN.
25. Zagidullin R., Antipov D., Dmitriev A., Zezin N. Development of a methodology for eliminating failures of an FDM 3D printer using a «failure tree» and FMEA analysis. Journal of Physics: Conference Series : 19, Moscow, 23–27 november 2020Moscow. 2021. pp. 012085. DOI: 10.1088/1742-6596/1925/1/012085. EDN FLPOQW.
26. Zagidullin R., Mitroshkina T., Dmitriev A. Quality Function Deployment and Design Risk Analysis for the Selection and Im-provement of FDM 3D Printer IOP Conference Series: Earth and Environmental Science. Vladivostok. 06–09 october 2020. Vladivostok. 2021. pp. 062123. DOI: 10.1088/1755-1315/666/6/062123. EDN ORRHGX.
27. Zagidullin R.S., Zezin N.I., Rodionov N.V. Improving the quality of FDM 3D printing of UAV and aircraft parts and assemblies by parametric software changes. IOP Conference Series: Materials Science and Engineering. Moscow. 16–17 october 2020. Moscow. 2021. P. 012031. DOI: 10.1088/1757-899X/1027/1/012031. EDN IOTNWD.

DOI: 10.34214/2312-5209-2022-36-4-03-10

Back to top